A Unified View on Multi-class Support Vector Classification
نویسندگان
چکیده
A unified view on multi-class support vector machines (SVMs) is presented, covering most prominent variants including the one-vs-all approach and the algorithms proposed by Weston & Watkins, Crammer & Singer, Lee, Lin, & Wahba, and Liu & Yuan. The unification leads to a template for the quadratic training problems and new multi-class SVM formulations. Within our framework, we provide a comparative analysis of the various notions of multi-class margin and margin-based loss. In particular, we demonstrate limitations of the loss function considered, for instance, in the Crammer & Singer machine. We analyze Fisher consistency of multi-class loss functions and universal consistency of the various machines. On the one hand, we give examples of SVMs that are, in a particular hyperparameter regime, universally consistent without being based on a Fisher consistent loss. These include the canonical extension of SVMs to multiple classes as proposed by Weston & Watkins and Vapnik as well as the one-vs-all approach. On the other hand, it is demonstrated that machines based on Fisher consistent loss functions can fail to identify proper decision boundaries in low-dimensional feature spaces. We compared the performance of nine different multi-class SVMs in a thorough empirical study. Our results suggest to use the Weston & Watkins SVM, which can be trained comparatively fast and gives good accuracies on benchmark functions. If training time is a major concern, the one-vs-all approach is the method of choice.
منابع مشابه
Fault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملMULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملAn unified framework for 'All data at once' multi-class Support Vector Machines
Support Vectors (SV) are a machine learning procedure based on Vapnik’s Statistical Learning Theory, initially defined for bi-classification problems. A lot of work is being made from different research areas to obtain new algorithms for multi-class problems, the more usual task in real-world problems. A promising extension is to treat ‘all data at once’ into one multi-class SVM by modifying th...
متن کاملدو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان
Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of discriminant classifiers training or their error. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 17 شماره
صفحات -
تاریخ انتشار 2016